1. **Theorem: Integration by Parts**

 If \(u \) and \(v \) are functions of \(x \) and have continuous derivatives, then
 \[
 \int u \, dv = uv - \int v \, du
 \]

2. **Guidelines for Integration by Parts**

 1. Let \(dv \) = the most complicated part of the integrand that fits a basic integration rule. Then let \(u \) = remaining part.

 2. Let \(u \) = the part of the integrand whose derivative is a function simpler than \(u \). Then let \(dv \) = remaining part.

3. **Common Integrals Using Integration by Parts:**

 1. Given \(\int x^n e^{ax} \, dx \), \(\int x^n \sin ax \, dx \), or \(\int x^n \cos ax \, dx \)

 Let \(u = x^n \); \(dv = e^{ax} \, dx \), \(\sin ax \, dx \), \(\cos ax \, dx \).

 2. Given \(\int x^n \ln x \, dx \), \(\int x^n \sin^{-1} ax \, dx \), or \(\int x^n \tan^{-1} ax \, dx \)

 Let \(u = \ln x \), \(\sin^{-1} x \), \(\tan^{-1} x \); \(dv = x^n \, dx \).

 3. Given \(\int e^{ax} \sin bx \, dx \), \(\int e^{ax} \cos bx \, dx \)

 Let \(u = \sin bx \) or \(\cos bx \); \(dv = e^{ax} \, dx \). (We need to use the "combining the like terms"-method.)