10.2 Plane Curves and Parametric Equations

Definition: If \(f \) and \(g \) are continuous functions of \(t \) on an interval \(I \), then the equations

\[
\begin{align*}
 x &= f(t) \\
 y &= g(t)
\end{align*}
\]

are called parametric equations and \(t \) is called the parameter. The set of points \((x, y)\) obtained as \(t \) varies over \(I \) is the graph of the parametric equations.

Ex #8 Sketch the curve represented by the parametric equations and write the corresponding rectangular equation by eliminating the parameter. \[\begin{align*}
 x &= t^2 + t \\
 y &= t^2 - t
\end{align*}\] \(t \in [-3, 3]\)

<table>
<thead>
<tr>
<th>(t)</th>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>-2</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>-1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.5</td>
<td>0.75</td>
<td>-0.25</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>1.5</td>
<td>3.75</td>
<td>0.75</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>6</td>
</tr>
</tbody>
</table>

Just plug-in values for \(t \) and find \(x \) & \(y \).

Think "clock"
It can be tricky to eliminate t and get an equation with only x & y, but let's try.

\[x = t^2 + t \]

\[y = t^2 - t \] \quad \text{solve for } t!

\[x - y = (t^2 + t) - (t^2 - t) \]
\[x - y = t^2 + t - t^2 + t \]
\[x - y = 2t \]

\[\frac{x - y}{2} = t \] \quad \text{Substitute into either } x = t^2 + t \text{ or } y = t^2 - t

\[x = t^2 + t \]

\[4x = \left(\frac{x - y}{2} \right)^2 + \left(\frac{x - y}{2} \right) \]

\[4x = \frac{(x - y)^2}{4} + \frac{x - y}{2} \]

\[4x = (x - y)^2 + 2(x - y) \]
\[-4x + 4x = x^2 - 2xy + y^2 + 2x - 2y - 4x \]
\[0 = x^2 - 2xy + y^2 - 2x - 2y \] \quad \text{If you want?}?

Restrictions / Range of values for x & y.

For $t \in [-3, 3]$

\[x = t^2 + t \]

\[x'(t) = 2t + 1 \]

Minimum at $0 = 2t + 1$

\[t = -\frac{1}{2} \]

\[x(-\frac{1}{2}) = \frac{3}{4} \]

Max at $t = 3$

\[(3, 12) \]

\[x \in [-\frac{1}{2}, 12] \]

Similarly, $y \in [-\frac{1}{2}, 12]$
Example: Use your graphing utility to graph \(x = t^2 \) in parametric mode. \(x = y^2 \)

Example 3

Sketch

\[
\begin{align*}
 x(t) &= 8 \cos \theta & 0 \leq \theta \leq \frac{\pi}{2} \\
y(t) &= 4 \sin \theta
\end{align*}
\]

Then eliminate the parameter to find an equation in \(x \) and \(y \).

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>(\frac{\pi}{6})</td>
<td>(\frac{4\sqrt{3}}{2})</td>
<td>2</td>
</tr>
<tr>
<td>(\frac{\pi}{4})</td>
<td>(\sqrt{2})</td>
<td>2\sqrt{2}</td>
</tr>
<tr>
<td>(\frac{\pi}{3})</td>
<td>(\frac{2}{3})</td>
<td>(2\sqrt{3})</td>
</tr>
<tr>
<td>(\frac{\pi}{2})</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

Eliminate \(\theta \):

\[
\begin{align*}
x &= 3 \cos \theta & \quad & y &= 4 \sin \theta \\
\frac{x}{3} &= \cos \theta & \quad & \frac{y}{4} &= \sin \theta \\
\left(\frac{x}{3} \right)^2 &= \cos^2 \theta & \quad & \left(\frac{y}{4} \right)^2 &= \sin^2 \theta
\end{align*}
\]

\[
\cos^2 \theta + \sin^2 \theta = 1
\]

\[
\frac{x^2}{9} + \frac{y^2}{16} = 1
\]

Ellipse: center \((0, 0)\)
Let's modify this situation:
\[\begin{align*}
\{ x(t) &= 3\sin(2t) & t & \in \left[0, \frac{\pi}{2} \right] \\
y(t) &= 4\cos(2t)
\end{align*} \]

<table>
<thead>
<tr>
<th>t</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>$\frac{\pi}{2}$</td>
<td>$\frac{3}{2}$</td>
<td>$2\sqrt{3}$</td>
</tr>
<tr>
<td>$\frac{\pi}{4}$</td>
<td>$3\frac{3}{4}$</td>
<td>2</td>
</tr>
<tr>
<td>$\frac{3\pi}{4}$</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>$\frac{\pi}{2}$</td>
<td>$3\frac{3}{4}$</td>
<td>-2</td>
</tr>
<tr>
<td>$\frac{5\pi}{4}$</td>
<td>$\frac{3}{2}$</td>
<td>$-2\sqrt{3}$</td>
</tr>
<tr>
<td>$\frac{3\pi}{2}$</td>
<td>0</td>
<td>-4</td>
</tr>
</tbody>
</table>

Compare with
\[\begin{align*}
x(t) &= 3\cos(\frac{\pi}{2} - 2t) \\
y(t) &= 4\sin(\frac{\pi}{2} - 2t)
\end{align*} \]

\[\begin{align*}
&x = 3\sin(2t) & y = 4\cos(2t) \\
&x = \sin(2t) & y = 4\cos(2t) \\
&(\frac{x}{4})^2 = \sin^2(2t) & (\frac{y}{4})^2 = \cos^2(2t) \\
&x^2 = 3\sin^2(2t) & y^2 = 3\cos^2(2t) \\
&\sin^2(2t) + \cos^2(2t) = 1 \\
&\frac{x^2}{9} + \frac{y^2}{16} = 1 \\
\end{align*} \]

- we started at a different point
- we moved in the opposite direction
- we moved "fast" at twice as fast
Find a set of parametric equations for the line that passes through (1,4) and (5,2).

Set $t = 0$

When $t = 0$, $x = 1$ and $y = 4$

When $t = 1$, $x = 5$, $y = -2$

$x = 1 + 4t$

$y = 4 - 6t$

Try on graphing calculator

$x(t) = 1 + 4t$

$y(t) = 4 - 6t$

or

$x(t) = 1 + 2t$

$y(t) = 4 - 3t$

or

$x(t) = 1 + 2t^2$

$y(t) = 4 - 3t^2$

$x = 1 + 4t$

$x - 1 = 4t$

$x - 1 = \frac{4t}{1}$

$y = 4 - 6t$

$y = 4 - 6\left(\frac{x-1}{4}\right)$

$y = 4 - \frac{3}{2}(x-1)$

$y = \frac{8}{2} - \frac{3}{2}x + \frac{3}{2}$

$y = \frac{5}{2} - \frac{3}{2}x + \frac{3}{2}$

$y = \frac{5}{2} - \frac{3}{2}x + \frac{11}{2}$