10.2 Rational Exponents

Example 1: Use radical notation to rewrite each expression. Simplify, if possible.

a.
$$36^{\frac{1}{2}} = \sqrt{36} = ?$$

b.
$$(-8)^{\frac{1}{3}}$$

c.
$$(9xy^2)^{\frac{1}{5}}$$

d. $(x^2)^{\frac{1}{2}}$

Example 2: Rewrite each expression using rational exponents.

- a. $\sqrt[4]{5xy} = (5xy)^{\frac{1}{4}}$
- b. $\sqrt[3]{3xy^2}$
- c. ∜4a²b
- d. $\sqrt{3xy}$

Definition of $a^{\frac{m}{n}}$

If $\sqrt[n]{a}$ represents a real number and $\frac{m}{n}$ is a positive rational number, $n \ge 2$, then $a^{\frac{m}{n}} = (\sqrt[n]{a})^m$ and $a^{\frac{m}{n}} = \sqrt[n]{a^m}$.

Note that if n is even and a is negative, $\sqrt[n]{a}$ does not represent a real number and $a^{\frac{m}{n}}$ is not a real number.

Example 3: Use radical notation to rewrite each of the following and then simplify.

- a. $16^{\frac{3}{2}} = \sqrt{16}^3 = 4^3 = ?$
- b. $8^{\frac{2}{3}}$
- c. $(-9)^{\frac{3}{2}}$
- d. $-32^{\frac{3}{5}}$

Note: Portions of this document are excerpted from the textbook *Introductory and Intermediate Algebra for College Students* by Robert Blitzer.

Example 4: Rewrite with rational exponents. a. ∜8⁵

b. $\sqrt[3]{(3x)^2}$

c.
$$\left(\sqrt[6]{5xy}\right)^7$$

d. $\sqrt[5]{25x^2}$

Definition of a $^{-\frac{m}{n}}$

If
$$a^{\frac{m}{n}}$$
 is a nonzero real number, then
 $a^{-\frac{m}{n}} = \frac{1}{a^{\frac{m}{n}}}$

Example 5: Rewrite each of the following with a positive exponent. Simplify, if possible. Assume all variables represent nonnegative quantities.

a.
$$49^{-\frac{1}{2}} = \frac{1}{49^{\frac{1}{2}}} = \frac{1}{\sqrt{49}} = ?$$

- c. $(2ab)^{-\frac{2}{3}}$ d. $(-27)^{-\frac{2}{3}}$

Properties of Rational Exponents

If m and n are rational exponents, and a and b are real numbers for which the following expressions are defined, then

1.
$$b^{m} \bullet b^{n} = b^{m+n}$$

2. $\frac{b^{m}}{b^{n}} = b^{m-n}$
3. $(b^{m})^{n} = b^{mn}$
4. $(ab)^{n} = a^{n}b^{n}$
5. $\left(\frac{a}{b}\right)^{n} = \frac{a^{n}}{b^{n}}$

Example 6: Simplify the following expressions with rational exponents. Express all answers with positive exponents. Assume all variables represent nonnegative quantities.

a.
$$8^{\frac{2}{3}} \cdot 8^{\frac{4}{3}}$$

b. $\frac{7^{\frac{5}{8}}}{7^{\frac{3}{8}}}$
c. $(3xy^2)^{\frac{5}{7}}$
d. $\frac{16x^{\frac{2}{3}}}{4x^{\frac{1}{2}}}$

Simplifying Radical Expressions Using Rational Exponents

To simplify a radical expression by using rational exponents:
1. Rewrite each radical expression as an exponential expression with a rational exponent.

2. Simplify using properties of rational exponents.

3. Rewrite your answer in radical notation when rational exponents still appear.

Example 7: Use rational exponents to simplify. Assume all variables represent nonnegative quantities.

a.
$$\sqrt[3]{8x^2} = (8x^2)^{\frac{1}{3}} = 8^{\frac{1}{3}} (x^2)^{\frac{1}{3}} = ?$$

b.
$$\sqrt{16xy^4}$$

c. $\sqrt[6]{64x^3}$

d.
$$\sqrt{x} \bullet \sqrt[3]{x^2}$$

e.
$$\sqrt[4]{x^3}$$

Note: Portions of this document are excerpted from the textbook *Introductory and Intermediate Algebra for College Students* by Robert Blitzer.

Application of Rational Exponents

Example 8: The function $f(x) = 70x^{\frac{3}{4}}$ models the number of calories per day, f(x), that a person needs to maintain life in terms of that person's weight, x, in kilograms. (1 kilogram is approximately 2.2 pounds.) Use the model and a calculator to find how many calories per day are required to maintain life for a person who weighs 55 kilograms (about 121 pounds). Round your answer to the nearest calorie.

Example 9: Use your calculator to evaluate the following to three decimal places.

a. $(234)^{\frac{1}{4}}$

b. $(-655)^{\frac{2}{3}}$ c. $(45)^{\frac{3}{4}} + \sqrt[3]{47}$

Note: Portions of this document are excerpted from the textbook Introductory and Intermediate Algebra for College Students by Robert Blitzer.

Answers Section 10.2

Example 1: a. 6 b. −2 c. ⁵ √9xy ² d. x	Example 5: a. $\frac{1}{7}$ b. $\frac{1}{8}$
Example 2:	c. $\frac{1}{(2ab)^{\frac{2}{3}}}$
a. (5xy) ¹ / ₄	(2ab) [±] 3
b. $(3xy^2)^{\frac{1}{3}}$	d. 1/9
c. $(4a^2b)^{\frac{1}{5}}$	Example 6:
d. $(3xy)^{\frac{1}{2}}$	a. 64 b. 7 ¹ / ₄
Example 3:	c. $3^{\frac{5}{7}}x^{\frac{5}{7}}y^{\frac{10}{7}}$
a. 64	•
b. 4	d. $4x^{\frac{1}{6}}$
c. Not a real	u. 47
number	Example 7:
d. –8	Example 7:
Example 4:	a. 2x ² / ₃
a. $8^{\frac{5}{4}}$	b. $4x^{\frac{1}{2}}y^{2}$
b. $(3x)^{\frac{2}{3}}$	c. $2x^{\frac{1}{2}}$
c. (5xy) ⁷ / ₆	d. $x^{\frac{7}{6}}$
	e. x ³ /8
d. $(25x^2)^{\frac{1}{5}}$	6. ۸
	Example 8: a. x = 55 kg., f(55) ≅ 1414 calories

Example 9: a. 3.911 b. 75.421 c. 20.983

Note: Portions of this document are excerpted from the textbook *Introductory and Intermediate Algebra for College Students* by Robert Blitzer.