10.2 Rational Exponents

Definition of $a^{\frac{1}{n}}$

If $\sqrt[n]{a}$ represents a real number and $n \geq 2$ is an integer, then

$$
a^{\frac{1}{n}}=\sqrt[n]{a}
$$

If n is odd and

- a is positive, then $a^{\frac{1}{n}}$ is positive.
- a is negative, then $a^{\frac{1}{n}}$ is negative.
- a is zero, then $a^{\frac{1}{n}}$ is zero.

If n is even and

- a is positive, then $a^{\frac{1}{n}}$ is positive.
- a is negative, then $a^{\frac{1}{n}}$ is not a real number
- a is zero, then $a^{\frac{1}{n}}$ is also zero.

Example 1: Use radical notation to rewrite each expression. Simplify, if possible.
a. $36^{\frac{1}{2}}=\sqrt{36}=$?
b. $(-8)^{\frac{1}{3}}$
c. $\left(9 x y^{2}\right)^{\frac{1}{5}}$
d. $\left(x^{2}\right)^{\frac{1}{2}}$

Example 2: Rewrite each expression using rational exponents.
a. $\sqrt[4]{5 x y}=(5 x y)^{\frac{1}{4}}$
b. $\sqrt[3]{3 x y^{2}}$
c. $\sqrt[5]{4 a^{2} b}$
d. $\sqrt{3 x y}$

Definition of $a^{\frac{m}{n}}$

If $\sqrt[n]{a}$ represents a real number and $\frac{m}{n}$ is a positive rational number, $n \geq 2$, then

$$
a^{\frac{m}{n}}=(\sqrt[n]{a})^{m} \text { and } a^{\frac{m}{n}}=\sqrt[n]{a^{m}}
$$

Note that if n is even and a is negative, $\sqrt[n]{a}$ does not represent a real number and $\mathbf{a}^{\frac{m}{n}}$ is not a real number.

Example 3: Use radical notation to rewrite each of the following and then simplify.
a. $16^{\frac{3}{2}}=\sqrt{16}^{3}=4^{3}=$?
b. $8^{\frac{2}{3}}$
c. $(-9)^{\frac{3}{2}}$
d. $-32^{\frac{3}{5}}$

Example 4: Rewrite with rational exponents.
a. $\sqrt[4]{8^{5}}$
b. $\sqrt[3]{(3 x)^{2}}$
c. $(\sqrt[6]{5 x y})^{7}$
d. $\sqrt[5]{25 x^{2}}$

Definition of $a^{-\frac{m}{n}}$
If $a^{\frac{m}{n}}$ is a nonzero real number, then

$$
a^{-\frac{m}{n}}=\frac{1}{a^{\frac{m}{n}}}
$$

Example 5: Rewrite each of the following with a positive exponent. Simplify, if possible. Assume all variables represent nonnegative quantities.
a. $49^{-\frac{1}{2}}=\frac{1}{49^{\frac{1}{2}}}=\frac{1}{\sqrt{49}}=$?
b. $32^{-\frac{3}{5}}$
c. $(2 \mathrm{ab})^{-\frac{2}{3}}$
d. $(-27)^{-\frac{2}{3}}$

Properties of Rational Exponents

If m and n are rational exponents, and a and b are real numbers for which the following expressions are defined, then

1. $b^{m} \cdot b^{n}=b^{m+n}$
2. $\frac{b^{m}}{b^{n}}=b^{m-n}$
3. $\left(b^{m}\right)^{n}=b^{m n}$
4. $(a b)^{n}=a^{n} b^{n}$
5. $\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}$

Example 6: Simplify the following expressions with rational exponents. Express all answers with positive exponents. Assume all variables represent nonnegative quantities.
a. $8^{\frac{2}{3}} \bullet 8^{\frac{4}{3}}$
b. $\frac{7^{\frac{5}{8}}}{7^{\frac{3}{8}}}$
c. $\left(3 x y^{2}\right)^{\frac{5}{7}}$
d. $\frac{16 x^{\frac{2}{3}}}{4 x^{\frac{1}{2}}}$

Simplifying Radical Expressions Using Rational Exponents

To simplify a radical expression by using rational exponents:

1. Rewrite each radical expression as an exponential expression with a rational exponent.
2. Simplify using properties of rational exponents.
3. Rewrite your answer in radical notation when rational exponents still appear.

Example 7: Use rational exponents to simplify. Assume all variables represent nonnegative quantities.
a. $\sqrt[3]{8 x^{2}}=\left(8 x^{2}\right)^{\frac{1}{3}}=8^{\frac{1}{3}}\left(x^{2}\right)^{\frac{1}{3}}=$?
b. $\sqrt{16 x y^{4}}$
c. $\sqrt[6]{64 x^{3}}$
d. $\sqrt{x} \bullet \sqrt[3]{x^{2}}$
e. $\sqrt{\sqrt[4]{\mathrm{x}^{3}}}$

Application of Rational Exponents

Example 8: The function $f(x)=70 x^{\frac{3}{4}}$ models the number of calories per day, $f(x)$, that a person needs to maintain life in terms of that person's weight, x, in kilograms. (1 kilogram is approximately 2.2 pounds.) Use the model and a calculator to find how many calories per day are required to maintain life for a person who weighs 55 kilograms (about 121 pounds). Round your answer to the nearest calorie.

Example 9: Use your calculator to evaluate the following to three decimal places.
a. $(234)^{\frac{1}{4}}$
b. $(-655)^{\frac{2}{3}}$
c. $(45)^{\frac{3}{4}}+\sqrt[3]{47}$

Answers Section 10.2

Example 1:

a. 6
b. -2
c. $\sqrt[5]{9 x y^{2}}$
d. $|x|$

Example 5:
a. $\frac{1}{7}$

Example 9:
a. 3.911
b. 75.421
c. 20.983

Example 2:
a. $(5 x y)^{\frac{1}{4}}$
c. $\frac{1}{(2 a b)^{\frac{2}{3}}}$
b. $\left(3 x y^{2}\right)^{\frac{1}{3}}$
d. $\frac{1}{9}$
c. $\left(4 a^{2} b\right)^{\frac{1}{5}}$

Example 6:
d. $(3 x y)^{\frac{1}{2}}$
a. 64
b. $7^{\frac{1}{4}}$

Example 3:
a. 64
c. $3^{\frac{5}{7}} x^{\frac{5}{7}} y^{\frac{10}{7}}$
b. 4
c. Not a real
d. $4 x^{\frac{1}{6}}$ number
d. -8

Example 7:

a. $2 x^{\frac{2}{3}}$
a. $8^{\frac{5}{4}}$
b. $4 x^{\frac{1}{2}} y^{2}$
b. $(3 x)^{\frac{2}{3}}$
c. $2 x^{\frac{1}{2}}$
c. $(5 x y)^{\frac{7}{6}}$
d. $x^{\frac{7}{6}}$
d. $\left(25 x^{2}\right)^{\frac{1}{5}}$
e. $x^{\frac{3}{8}}$

Example 8:
a. $x=55 \mathrm{~kg}$.,
$f(55) \cong 1414$
calories

