10.7 Complex Numbers

The Imaginary Unit i
The imaginary unit i is defined as

$$
\mathrm{i}=\sqrt{-1} \text { where } \mathrm{i}^{2}=-1 .
$$

If b is a positive number, then

$$
\sqrt{-b}=\sqrt{b(-1)}=\sqrt{b} \sqrt{-1}=i \sqrt{b}
$$

Example 1: Write each square root of a negative number as a multiple of i.
a. $\sqrt{-5}=\sqrt{-1 * 5}=\sqrt{-1} * \sqrt{5}=\mathrm{i} \sqrt{5}$
b. $\sqrt{-25}$
c. $\sqrt{-16}$

Complex Numbers and Imaginary Numbers

The set of all numbers in the form

$$
a+b i
$$

with real numbers a and b, and i, the imaginary unit, is called the set of complex numbers. The real number a is called the real part, and the real number b is called the imaginary part, of the complex number $a+b i$. Complex numbers can be further described as either:

- Imaginary, if $a=0$
- Real, if $b=0$,
- Complex but not real, if neither a nor b is zero.

Example 2:

a. Consider the complex number $8+5 \mathrm{i}$. What is the imaginary part of the number? The real part? How can you further describe this number?
b. Consider the complex number 8 . What is the imaginary part of this complex number? How can you further describe this number?
c. Consider the complex number 5 i . What is the imaginary part of this number? The real part? How can you further describe this number?

Adding and Subtracting Complex Numbers

To add or subtract complex numbers:

1. $(a+b i)+(c+d i)=(a+c)+(b+d) i$

In words, add complex numbers by adding the real parts, adding the imaginary parts, and expressing the result as a complex number.
2. $(a+b i)-(c+d i)=(a-c)+(b-d) i$

In words, subtract complex numbers by subtracting the real parts, subtracting the imaginary parts, and expressing the result as a complex number.
Example 3: Simplify the following.
a. $(2-3 i)+(5+7 i)$
b. $(10+8 i)-(2-6 i)$

Multiplying Complex Numbers

To multiply complex numbers, use the distributive law and the FOIL method.
Example 4: Simplify the following.
a. $(2-3 i)(5+7 i)$
b. $7 \mathrm{i}(3-\mathrm{i})$

The product rule for radicals only applies to real numbers. If a radical does not represent a real number, you must write the radical as a multiple of i before you use the product rule.
Example 5: Simplify the following.
a. $\sqrt{-4} \sqrt{-9}=2 \mathrm{i} * 3 \mathrm{i}=$?
b. $\sqrt{-5} \sqrt{-6}$

Conjugates and Division of Complex Numbers

The conjugate of the complex number a + bi is the complex number a - bi. When a complex number is multiplied by its conjugate, the result is a real number.
Example 6: Multiply each complex number by its conjugate.
a. 7 i
b. $3+7 i$
c. $6+5 i$

To divide two complex numbers, write in fraction form and then multiply the numerator and the denominator by the conjugate of the denominator.

Example 7: Simplify.
a. $\frac{3-i}{7 i}$
b. $\frac{3-2 i}{6+5 i}=\frac{3-2 i}{6+5 i} * \frac{6-5 i}{6-5 i}=$?
c. $\frac{3-i}{7-i}$

Powers of \mathbf{i}

The powers of i cycle through four values: $i,-1,-i$, and 1 .
Example 8: Simplify.
a. i^{1}
b. i^{2}
c. i^{3}
d. i^{4}
e. i^{5}
f. i^{6}
g. i^{7}
h. i^{8}

Simplifying Powers of \mathbf{i}

To simplify a power of i

1. Express the given power of i in terms of i^{2}.
2. Replace i^{2} by -1 and simplify. Use the fact that -1 to an even power is 1 and -1 to an odd power is -1 .

Example 9: Simplify.
a. $i^{12}=\left(i^{2}\right)^{6}=(-1)^{6}=1$
b. $i^{31}=\left(i^{2}\right)^{15} \cdot i=(-1)^{15} \bullet i=-1 \bullet i=-i$
c. i^{52}
d. i^{79}

Answers Section 10.7

Example 1:
a. $i \sqrt{5}$
b. 5 i
c. 4 i

Example 2:

a. 8 is the real part and 5 is the imaginary part. The number is a complex number that is a "complex number that is not real".
b. 8 is the real part and 0 is the imaginary part. The number is a complex number that is "real".
c. 0 is the real part and 5 is the imaginary part. The number is a complex number that is "imaginary".

Example 3:
a. $7+4 i$
b. $8+14 i$

Example 4:
a. 31 - I
b. $7+21 i$

Example 5:
a. -6
b. $-\sqrt{30}$

Example 6:
a. 49
b. 58
c. 61

Example 7:

a. $\frac{-21 i-7}{49}$
b. $\frac{8-27 i}{61}$
c. $\frac{22-4 i}{50}$

Example 8:
a. i
b. -1
c. -i
d. 1
e. i
f. -1
g. -i
h. 1

Example 9:

a. 1
b. -i
c. 1
d. -i

