11.2 The Quadratic Formula

Solving Quadratic Equations Using the Quadratic Formula.

By solving the general quadratic equation $ax^2 + bx + c = 0$ using the method of completing the square, one can derive the quadratic formula. The quadratic formula can be used to solve any quadratic equation.

The Quadratic Formula The solutions of a quadratic equation in standard form $ax^{2} + bx + c = 0$, with $a \neq 0$, are given by the quadratic formula $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$.

Example 1: Solve the given quadratic equations by using the quadratic formula.

a.
$$2x^2 = 6x - 1$$

b.
$$3x^2 + 5 = -6x$$

c.
$$3 + \frac{4}{x} = -\frac{2}{x^2}$$

The Discriminant

The quantity $b^2 - 4ac$, which appears under the radical sign in the quadratic formula, is called the discriminant. The value of the discriminant for a given quadratic equation can be used to determine the kinds of solutions that the quadratic equation has.

Volue of the	Kinda of Solutions	$\mathbf{O} = \mathbf{O} + \mathbf{O} + \mathbf{O} + \mathbf{O} = \mathbf{O}$
value of the	Rinus of Solutions	Graph of $y=ax^2+bx+c$
Discriminant		
b ² - 4ac>0	Two unequal real solutions. Graph crosses the x-axis twice.	
b ² -4ac=0	One real solution (a repeated solution) that is a real number. Graph touches the x-axis.	1
b ² -4ac<0	Two complex solutions that are not real and are complex conjugates of one another. Graph does not touch or cross the x-axis.	-1

The Discriminant and the Kinds of Solutions to $ax^2 + bx + c = 0$

Note: Portions of this document are excerpted from the textbook *Introductory and Intermediate Algebra for College Students* by Robert Blitzer

Example 2: For each equation, compute the discriminant. Then determine the number and types of solutions.

a. $x^2 + 6x + 9 = 0$

$$b. \ 2x^2 - 7x - 4 = 0$$

c.
$$3x^2 - 2x + 4 = 0$$

Determining Which Method to Use To Solve a Quadratic Equation

Use the following chart as a guide to help you in finding the most efficient method to use to solve a given quadratic equation.

Method 1: $ax^{2} + bx + c = 0$ and $ax^{2} + bx + c$ can be factored easily	Factor and use the zero-product principle.	Ex: $2x^2 - 3x + 1 = 0$ (2x - 1)(x - 1) = 0 $x = \frac{1}{2}, x = 1$
Method 2: $ax^{2} + c = 0$ The quadratic equation has no x- term.	Solve for x ² and use the square root property.	Ex: $2x^{2} - 18 = 0$ $2x^{2} = 18$ $x^{2} = 9$ $x = \pm 3$
Method 3: $u^2 = d$ and u is a first degree polynomial	Use the square root property	Ex: $(2x-1)^2 = 9$ $2x-1=\pm 3$ $2x = 1\pm 3$ x = 2,-1
Method 4: $ax^{2} + bx + c = 0$ and $ax^{2} + bx + c$ cannot be factored or the factoring is too difficult	Use the quadratic formula.	Ex: $x^{2} + x + 2 = 0$ $x = \frac{-1 \pm \sqrt{(1)^{2} - 4(1)(2)}}{2(1)}$ $x = \frac{-1 \pm i\sqrt{7}}{2}$

Example 3: Match each equation with the proper technique given in the chart. Place the equation in the chart and solve it.

a.
$$(2x-3)^2 = 7$$

b.
$$4x^2 = -9$$

- *c*. $2x^2 + 3x = 1$
- *d*. $2x^2 + 3x = -1$

Writing Quadratic Equations from Solutions

To find a quadratic equation that has a given solution set $\{a,b\}$, write the equation (x-a)(x-b) = 0 and multiply and simplify.

Example 4: Find a quadratic equation that has the given solution set.

b.
$$\left\{-\frac{1}{2},\frac{2}{5}\right\}$$

Applications of Quadratic Equations

Use your calculator to assist you in solving the following problem. Round your answer(s) to the nearest whole number.

Example 5: The number of fatal vehicle crashes per 100 million miles, f(x), for drivers of age x can be modeled by the quadratic function

 $f(x) = 0.013x^2 - 1.19x + 28.24$

What age groups are expected to be involved in 3 fatal crashes per 100 million miles driven?

Example 6: Use your calculator to approximate the solutions of the following quadratic equations to the nearest tenth.

a. $2.1x^2 - 3.8x - 5.2 = 0$

b. $4.5x^2 - 10.2x + 1.3 = 0$

Answers Section 11.2

Example 1:

a.
$$\left\{\frac{3+\sqrt{7}}{2}, \frac{3-\sqrt{7}}{2}\right\}$$

b. $\left\{\frac{-3+i\sqrt{6}}{3}, \frac{-3-i\sqrt{6}}{3}\right\}$
c. $\left\{\frac{-2+i\sqrt{2}}{3}, \frac{-2-i\sqrt{2}}{3}\right\}$

Example 2: a. value of discriminant is 0, one real solution.

b. *v*alue of discriminant is 81, two real solutions.

c. *v*alue of discriminant is -44, two complex solutions that are not real and are complex conjugates of each other.

Example 3:

a. Method 3.
$$\left\{\frac{3+\sqrt{7}}{2}, \frac{3-\sqrt{7}}{2}\right\}$$

b. Method 2. $\left\{-\frac{3i}{2}, \frac{3i}{2}\right\}$
c. Method 4. $\left\{\frac{-3+\sqrt{17}}{4}, \frac{-3-\sqrt{17}}{4}\right\}$
d. Method 1. $\left\{-\frac{1}{2}, -1\right\}$

Example 4:
a.
$$x^2 - 3x - 10 = 0$$

b. $10x^2 + x - 2 = 0$
c. $x^2 + 9 = 0$

Example 5: The age groups that can be expected to be involved in 3 fatal crashes per 100 million miles driven are ages 33 and 58.

Example 6: a. 2.7 and -0.9 b. 0.1 and 2.1