### 11.2 The Quadratic Formula

## Solving Quadratic Equations Using the Quadratic Formula.

By solving the general quadratic equation $a x^{2}+b x+c=0$ using the method of completing the square, one can derive the quadratic formula. The quadratic formula can be used to solve any quadratic equation.
The Quadratic Formula
The solutions of a quadratic equation in standard form
$a x^{2}+b x+c=0$, with $a \neq 0$, are given by the quadratic formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} .
$$

Example 1: Solve the given quadratic equations by using the quadratic formula.
a. $2 x^{2}=6 x-1$
b. $3 x^{2}+5=-6 x$
c. $3+\frac{4}{x}=-\frac{2}{x^{2}}$

## The Discriminant

The quantity $b^{2}-4 a c$, which appears under the radical sign in the quadratic formula, is called the discriminant. The value of the discriminant for a given quadratic equation can be used to determine the kinds of solutions that the quadratic equation has.

The Discriminant and the Kinds of Solutions to $a x^{2}+b x+c=0$


Example 2: For each equation, compute the discriminant. Then determine the number and types of solutions.
a. $x^{2}+6 x+9=0$
b. $2 x^{2}-7 x-4=0$
c. $3 x^{2}-2 x+4=0$

## Determining Which Method to Use To Solve a Quadratic

## Equation

Use the following chart as a guide to help you in finding the most efficient method to use to solve a given quadratic equation.

| Method 1: $a x^{2}+b x+c=0$ and $a x^{2}+b x+c$ can $b e$ factored easily | Factor and use the zero-product principle. | $\begin{gathered} \text { Ex: } 2 x^{2}-3 x+1=0 \\ (2 x-1)(x-1)=0 \\ x=\frac{1}{2}, x=1 \end{gathered}$ |
| :---: | :---: | :---: |
| Method 2: $a x^{2}+c=0$ <br> The quadratic equation has no $x$ term. | Solve for $x^{2}$ and use the square root property. | $\text { Ex: } \begin{gathered} 2 x^{2}-18=0 \\ 2 x^{2}=18 \\ \\ x^{2}=9 \\ \\ x= \pm 3 \end{gathered}$ |
| Method 3: $u^{2}=d$ <br> and $u$ is a first degree polynomial | Use the square root property | $\begin{gathered} \text { Ex: } \begin{array}{c} (2 x-1)^{2}=9 \\ 2 x-1= \pm 3 \\ 2 x=1 \pm 3 \\ x=2,-1 \\ \hline \end{array}{ }^{2}=9 \end{gathered}$ |
| Method 4: $a x^{2}+b x+c=0$ and $a x^{2}+b x+c$ cannot be factored or the factoring is too difficult | Use the quadratic formula. | $\begin{aligned} & \text { Ex: } x^{2}+x+2=0 \\ & x=\frac{-1 \pm \sqrt{(1)^{2}-4(1)(2)}}{2(1)} \\ & x=\frac{-1 \pm i \sqrt{7}}{2} \end{aligned}$ |

Example 3: Match each equation with the proper technique given in the chart. Place the equation in the chart and solve it.
a. $(2 x-3)^{2}=7$
b. $4 x^{2}=-9$
c. $2 \mathrm{x}^{2}+3 x=1$
d. $2 \mathrm{x}^{2}+3 x=-1$

## Writing Quadratic Equations from Solutions

To find a quadratic equation that has a given solution set $\{a, b\}$, write the equation $(x-a)(x-b)=0$ and multiply and simplify.

Example 4: Find a quadratic equation that has the given solution set.
a. $\{-2,5\}$
b. $\left\{-\frac{1}{2}, \frac{2}{5}\right\}$
c. $\{3 i,-3 i\}$

## Applications of Quadratic Equations

Use your calculator to assist you in solving the following problem.
Round your answer(s) to the nearest whole number.
Example 5: The number of fatal vehicle crashes per 100 million miles, $f(x)$, for drivers of age $x$ can be modeled by the quadratic function

$$
f(x)=0.013 x^{2}-1.19 x+28.24
$$

What age groups are expected to be involved in 3 fatal crashes per 100 million miles driven?

Example 6: Use your calculator to approximate the solutions of the following quadratic equations to the nearest tenth.
a. $2.1 \mathrm{x}^{2}-3.8 x-5.2=0$
b. $4.5 x^{2}-10.2 x+1.3=0$

## Answers Section 11.2

## Example 1:

a. $\left\{\frac{3+\sqrt{7}}{2}, \frac{3-\sqrt{7}}{2}\right\}$
b. $\left\{\frac{-3+i \sqrt{6}}{3}, \frac{-3-i \sqrt{6}}{3}\right\}$
c. $\left\{\frac{-2+i \sqrt{2}}{3}, \frac{-2-i \sqrt{2}}{3}\right\}$

Example 2:
a. value of discriminant is 0 , one real solution.

## Example 4:

a. $x^{2}-3 x-10=0$
b. $10 x^{2}+x-2=0$
c. $x^{2}+9=0$

Example 5: The age groups that can be expected to be involved in 3 fatal crashes per 100 million miles driven are ages 33 and 58 .

## Example 6:

a. 2.7 and -0.9
b. value of discriminant is 81 ,
two real solutions.
c. value of discriminant is -44 , two complex solutions that are not real and are complex conjugates of each other.

## Example 3:

a. Method 3. $\left\{\frac{3+\sqrt{7}}{2}, \frac{3-\sqrt{7}}{2}\right\}$
b. Method 2. $\left\{-\frac{3 i}{2}, \frac{3 i}{2}\right\}$
c. Method 4. $\left\{\frac{-3+\sqrt{17}}{4}, \frac{-3-\sqrt{17}}{4}\right\}$
d. Method 1. $\left\{-\frac{1}{2},-1\right\}$

