11.4 Equations in Quadratic Form

Quadratic Form

An equation that is quadratic in form is an equation that can be expressed as a quadratic equation using an appropriate substitution. In symbols:

- equation in quadratic form

$$
a x^{2 n}+b x^{n}+c=0
$$

- substitution
$t=x^{n}$
- resulting quadratic equation: $\mathrm{at}^{2}+\mathrm{bt}+\mathrm{c}=0$

Example 1: Choose an appropriate substitution and write the given equations as a quadratic equation in t.
a. $x^{4}-10 x^{2}+9=0$
b. $x^{\frac{1}{2}}-10 x^{\frac{1}{4}}+9=0$
c. $2 x-\sqrt{x}-10=0$
d. $(x+3)^{2}+7(x+3)-18=0$
e. $x^{-2}-x^{-1}-6=0$

Solving Equations That Are Quadratic in Form

To solve equations that are quadratic in form:

1. Choose an appropriate substitution and rewrite the original equation as a quadratic equation in t.
2. Solve the quadratic equation in t.
3. Use the original substitution and the t-solutions to find the x solutions.
4. Check your solutions. If at any time during the solution process you raised both sides of an equation to an even power, a check is required, since raising both sides to an even power may introduce extraneous solutions.

Example 2: Solve the given equations.

a. $x^{4}-10 x^{2}+9=0$
b. $x^{6}-10 x^{3}+9=0$

Note: Portions of this document are excerpted from the textbook Introductory and Intermediate Algebra for College Students by Robert Blitzer

$$
\text { c. } x^{\frac{1}{2}}-10 x^{\frac{1}{4}}+9=0
$$

d. $2 x-\sqrt{x}-10=0$

Note: Portions of this document are excerpted from the textbook Introductory and Intermediate Algebra for College Students by Robert Blitzer
e. $(x+3)^{2}+7(x+3)-18=0$

Note: Portions of this document are excerpted from the textbook Introductory and Intermediate Algebra for College Students by Robert Blitzer

$$
\text { f. } x^{-2}-x^{-1}-6=0
$$

Finding x-intercepts of a Quadratic-in-Form Function

To find x-intercepts of a function, substitute 0 for $f(x)$ and solve the resulting equation.
Example 3: Find the x-intercepts of the given functions.
a. $f(x)=x^{4}-13 x^{2}+36$
b. $f(x)=x^{\frac{2}{3}}-9 x^{\frac{1}{3}}+8$

Note: Portions of this document are excerpted from the textbook Introductory and Intermediate Algebra for College Students by Robert Blitzer

Answers Section 11.4

Example 1:

a. Let $t=x^{2} . \quad t^{2}-10 t+9=0$
b. Let $\mathrm{t}=\mathrm{x}^{\frac{1}{4}} . \quad t^{2}-10 t+9=0$
c. Let $\mathrm{t}=\sqrt{\mathrm{x}} . \quad 2 t^{2}-t-10=0$
d. Let $\mathrm{t}=(\mathrm{x}+3) . \quad t^{2}+7 t-18=0$
e. Let $\mathrm{t}=\mathrm{x}^{-1} . \quad t^{2}-t-6=0$

Example 2:

a. $\{-3,-1,1,3\}$
b. $\{1, \sqrt[3]{9}\}$
c. $\{1,6561\}$
d. $\left\{\frac{25}{4}\right\}$
e. $\{-1,-12\}$
f. $\left\{-\frac{1}{2}, \frac{1}{3}\right\}$

Example 3:

a. x-intercepts are $(\pm 2,0)$ and $(\pm 3,0)$
b. x-intercepts are $(1,0)$ and $(512,0)$

