13.5 Systems of Non-Linear Equations

A system of two non-linear equations in two variables, also called a nonlinear system, contains at least one equation that cannot be expressed as Ax + By = C. We solve systems by using either elimination or _____.

Ex. 1 $\begin{cases} x^2 = 2y + 10 \\ 3x - y = 9 \end{cases}$

Ex. 2
$$\begin{cases} (x-2)^2 + (y+3)^2 = 4 \\ x-y = 3 \end{cases}$$

- **Ex 3.** How many possible solutions could there be for the intersection of a parabola and a circle?
- **Ex 4.** How many possible solutions could there be for the intersection of a parabola and a line?

Ex 5. How many possible solutions could there be for the intersection of two parabolas?

Ex 6. Solve the following system of equations: $\begin{cases} y = -x^2 - 2x + 14 \\ y = x^2 - 4x - 10 \end{cases}$

Ex 7. Solve the following system of equations: $\begin{cases} x^2 + y^2 = 4 \\ y^2 - x = 4 \end{cases}$

Ex 8. Solve the following system of equations:

$$\begin{cases} x^2 + y = 4\\ 2x + y = 1 \end{cases}$$

Ex 9. Solve the following system of equations:

$$\begin{cases} x^{2} + (y-2)^{2} = 4\\ x^{2} - 2y = 0 \end{cases}$$

Sy	stems of Non-Linear Eq	uations	Name Date _			
Recall SOME of the Equations we have covered:						
a)	Equations of Lines	b) Equations o	of Parabol	as c) Equations of Circles	

There are many other non-linear equations, such as an ellipse, hyperbola, sine, cosine, logistic, limacons, to name a few. For those of you continuing on in Mathematics there is so much to look forward to!

To be a SOLUTION TO A SYSTEM OF LINEAR EQUATIONS ⇔ must work in BOTH !

Ex 1. Is (-2, 3) a solution to the system ? Yes or No? **Ex. 2.** Is (-1, 7) a solution to the system? Yes *or* No?

$\int x + 2y = 4$	$\int 3x + 2y = 11$
$\int 2x + y = -1$	$\int x + 5y = 36$

PREREQUISITE KNOWLEDGE:

Revisiting: Ex 1. Graph and find the solution to :
$$\begin{cases} x + 2y = 4 \\ 2x + y = -1 \end{cases}$$

SOLVING A SYSTEM OF EQUATIONS

USING ELIMINATION AND SUBSTITUTION

SINCE GRAPHING A SYSTEM ONLY SHOWS LOCATION, CAN WE JUST SKIP THE GRAPHING AND USE ALGEBRA TO FIND THE POINT (if there is one) OF INTERSECTION?

THREE 1. You want EACH equation to be in **standard** form.

EASY 2. You want to eliminate either the x or the y term or SUB

STEPS 3. Solve and then find the point you need (substitute...AND CHECK)

Revisiting: Ex 1. x + 2y = 42x + y = -1

A SOLUTION TO A SYSTEM OF NON-LINEAR EQUATIONS ⇔ must work in BOTH !

Recall this problem from our last set of notes

- Find the equation of the circle graphed below.
 Your answer should be in standard form.
- B Graph the parabola: y = x² on the graph in problem
 At what two points do the graphs intersect?

