Section 7.6 Solving Rational Equations

Solving Rational Equations

Follow these steps to solve a rational equation:

1. List restrictions on the variable. Avoid any values of the variable that make a denominator zero.
2. Clear the equation of fractions by multiplying both sides by the LCD of all rational expressions in the equation.
3 . Solve the resulting equation.
3. Reject any proposed solution that is in the list of restrictions on the variable. Check other proposed solutions in the original equation.

Example 1: Solve each of the following rational equations.
a. $\mathrm{x}+\frac{3}{\mathrm{x}}=\frac{19}{\mathrm{x}}$
b. $\frac{4}{\mathrm{y}}-\frac{\mathrm{y}}{2}=\frac{7}{2}$
c. $\frac{3}{2 y-2}+\frac{1}{2}=\frac{2}{y-1}$
d. $\frac{x-3}{x-2}+\frac{x+1}{x+3}=\frac{2 x^{2}-15}{x^{2}+x-6}$

Note: Portions of this document are excerpted from the textbook Introductory and Intermediate Algebra for College Students by Robert Blitzer.

Applications of Rational Equations:

To Solve Applied Problems Using Rational Equations:

1. Identify the quantity represented by each variable in the rational equation.
2. Plug the known quantities into the equation for the appropriate variables.
3. Solve for the unknown variable.

Example 2: The rational expression $y=\frac{250 x}{100-x}$ models the cost, in millions of dollars, to remove x percent of the pollutants that are discharged into a river.
a. How much does it cost to remove 50% of the pollutants?
b. If the government commits $\$ 375$ million for this project, what percentage of the pollutants can be removed?

Answers Section 7.6

Example 1:

a. $\{4,-4\}$
b. $\{-8,1\}$
c. $\{2\}$
d. $\{4\}$

Example 2:

a. $\$ 250$ million
b. 60% will be removed

