Section 9.1 Solving Linear Inequalities

We know that a linear equation in x can be expressed as $a x+b=0$. A linear inequality in \boldsymbol{x} can be written in one of the following forms: $a x+b<0, a x+b \leq 0, a x+b>0$, or $a x+b \geq 0$ In each form, $a \neq 0$.

If an inequality does not contain fractions, it can be solved using the following procedure. Notice how similar this procedure is to the procedure for solving a linear equation.

Steps for solving a linear inequality

Step 1. Simplify each side.
Step 2. Collect variable terms on one side and constant terms on the other (use addition property of inequalities)
Step 3. Isolate the variable and solve (use multiplication property of inequalities, change the sense of the inequality when multiplying, or dividing both sides by a negative number)
Step 4. Express the solution set in interval notation or set-builder notation and graph the solution set on a number line.

Example 1: Solve and graph the solution set on a number line:
$3 x-5>-17$

Note: Portions of this document are excerpted from the textbook Introductory and Intermediate Algebra for College Students by Robert Blitzer.

Example 2: Solve and graph the solution set on a number line:
$-2 x-4>x+5$

If an inequality contains fractions, begin by multiplying both sides by the least common denominator. This will clear the inequality of fractions.

Example 3: Solve and graph the solution set on a number line:

$$
\frac{x-4}{2} \geq \frac{x-2}{3}+\frac{5}{6}
$$

Note: Portions of this document are excerpted from the textbook Introductory and Intermediate Algebra for College Students by Robert Blitzer.

Example 4: You are choosing between two telephone plans. Plan A has a monthly fee of $\$ 15$ with a charge of 8 cents per minute for all calls. Plan B has a monthly fee of $\$ 3$ with a charge of 12 cents per minute for all calls. How many minutes of calls in a month make plan A the better deal? (Define a variable, create an inequality, solving using algebra, and answer in a sentence.)

APPLICATION: For a business to realize a profit, the revenue (or income), R, must be greater than the \qquad C. That is, a profit will be obtained only when $R>C$. The company breaks \qquad when $\mathrm{R}=\mathrm{C}$.

If you sell x units of a product at a certain price p, then your revenue function is $R(x)=$ \qquad .

The cost of your business may include a fixed cost (like rental fees, initial cost of equipment, etc.) and the cost of making each item.

$$
C(x)=\text { fixed cost }+\ldots
$$

The profit $P(x)$, generated after producing and selling x units of a product is given by the profit function:

$$
P(x)=
$$

\qquad
\qquad
Note: Portions of this document are excerpted from the textbook Introductory and Intermediate Algebra for College Students by Robert Blitzer.

Example 5: Technology is now promising to bring light, fast, and beautiful wheelchairs to millions of disabled people. A company is planning to manufacture these radically different wheelchairs. Fixed cost will be $\$ 500,000$ and it will cost $\$ 400$ to produce each wheelchair. Each wheelchair will be sold for $\$ 600$.
a) Write the cost function, C, of producing x wheelchairs.
b) Write the revenue function, R, of producing x wheelchairs.
c) Write the profit function, P, from producing and selling x wheelchairs.
d) How many wheelchairs must be produced and sold for the business to make money?

Extra Practice: Solve the given inequalities and graph the solution set. Express your answer in interval notation.

Example 6:

a. $-4(x+2)>3 x+20$

b. $\frac{3 x}{10}+1 \geq \frac{1}{5}-\frac{x}{10}$

c. $\frac{4 x-3}{6} \geq \frac{2 x-1}{12}-2$

Note: Portions of this document are excerpted from the textbook Introductory and Intermediate Algebra for College Students by Robert Blitzer.

Answers Section 9.1

Example 1: $(-4, \infty)$
Example 2: $(-\infty,-3)$
Example 3: $[13, \infty)$
Example 4:
let $x=$ minutes used in call plan, $15+0.08<3+0.12 x, x>300$,
Plan A is a better deal when you use more than 300 minutes of calls.
Example 5a: $C(x)=500,000+400 x$
Example 5b: $R(x)=600 x$
Example 5c: $P(x)=200 x-500,000$

$$
200 x-500,000>0, \quad x>2,500
$$

Example 5d: More than 2,500 wheelchairs must be produced and sold for the business to make money.

Extra Practice:

Example 6a: $(-\infty,-4)$
Example 6b: $[-2, \infty)$
Example 6c: $\left[-\frac{19}{6}, \infty\right)$

Common Student Error: Students often forget to change the sense, (the \qquad), of the inequality when multiplying or dividing by a \qquad number.

$$
\begin{array}{ll}
\text { Given: }-3 x<6 \quad & \frac{-3 x}{-3}<\frac{6}{-3} \rightarrow x<-2 \text { is WRONG } \\
& \frac{-3 x}{-3}>\frac{6}{-3} \rightarrow x>-2 \text { is CORRECT }
\end{array}
$$

