| Chemistry 210    |
|------------------|
| October 29, 2003 |

Name \_\_\_\_\_

16 1. Give structures for each of the following compounds or ions:

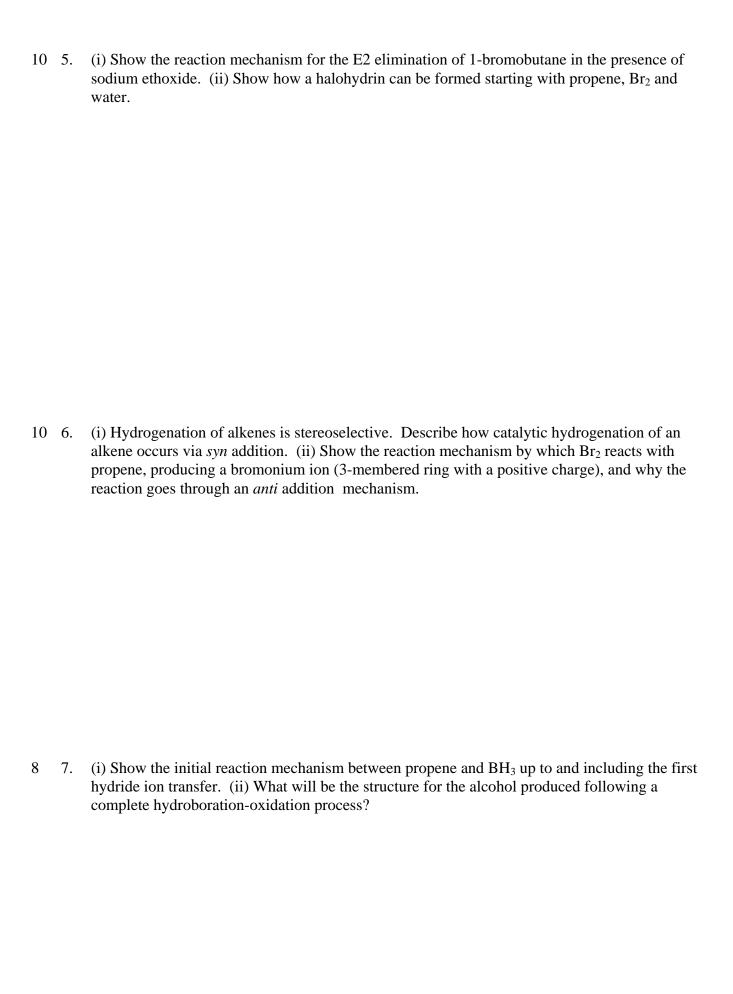
*t*-butyl oxonium ion

*trans*-2-methyl-3-hexene

propylbromonium ion

sec-butylcarbocation

thionyl chloride


(Z)-1,2-dibromo-1-butene

(*E*)-1-methyl-1,2-cylcopentanediol

a 4-carbon aldehyde

12 2. Show the reaction mechanism for the acid-catalyzed elimination reaction of 3-methyl-2-butanol that actually produces three different alkenes. Alkyl and/or hydride shifts may be required. For the three potential products predict the order of increasing percentage of product formed (the product which is preferred will be formed more!).

| 16 | 3. | We have usually started with a reactant and showed the product. However, organic chemists are often given a product, and have to determine a good reactant. For the following products, show any <i>alkene</i> that could be used to produce the product shown. Include any other chemicals which may be required for these chemical transformations. ( <i>Draw the structure of the product, to give yourself a better idea about structures of potential alkene reactants.</i> ) |
|----|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |    | t-butyl alcohol                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    |    | 1-bromo-2-pentanol                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|    |    | 2-butanol                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|    |    | 1-butanol                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 12 | 4. | (i) Show the complete <i>reaction mechanism</i> (with arrows) and product for the reaction of propene and HBr, including the formation of the intermediate carbocation. (ii) Show the reaction product ( <i>but no reaction mechanism is necessary</i> ) for reaction of HBr and propene in the presence of peroxides. (iii) Explain why peroxides lead to anti-Markovnikov HBr addition.                                                                                          |



| 6  | 8. | Each of the following compounds are weak nucleophiles as shown. Show a reaction that you could use to make each into a stronger nucleophile (a more basic compound or ion).  HOH |
|----|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |    | $\mathrm{NH}_3$                                                                                                                                                                  |
|    |    | ethanol                                                                                                                                                                          |
| 10 | 9. | Show the reaction mechanism by which <i>t</i> -butyl bromide reacts with water to produce <i>t</i> -butyl alcohol, going through a carbocation.                                  |
|    |    |                                                                                                                                                                                  |