Decomposition of $\frac{R(x)}{Q(x)}$ into Partial Fractions:

1. Divide if Improper: If $\frac{R(x)}{Q(x)}$ is an improper fraction ($\operatorname{deg}(R) \geq \operatorname{deg}(Q)$), divide the denominator into the numerator by using long-division of polynomials to obtain

$$
\frac{R(x)}{Q(x)}=f(x)+\frac{r(x)}{Q(x)}
$$

where $\operatorname{deg} r<\operatorname{deg} Q$.
2. Factor Denominator: Completely factor the denominator of $\frac{R(x)}{Q(x)}$ into irreducible factors.

Case 1. The denominator $Q(X)$ is a product of distinct linear factors:
Suppose $Q(x)$ factors into

$$
Q(x)=\left(a_{1} x+b_{1}\right)\left(a_{2} x+b_{2}\right)\left(a_{3} x+b_{3}\right) \cdots\left(a_{k} x+b_{k}\right) \quad \text { (No factor is repeated). }
$$

Then

$$
\frac{R(x)}{Q(x)}=\frac{A_{1}}{\left(a_{1} x+b_{1}\right)}+\frac{A_{2}}{\left(a_{2} x+b_{2}\right)}+\frac{A_{3}}{\left(a_{3} x+b_{3}\right)}+\cdots+\frac{A_{k}}{\left(a_{k} x+b_{k}\right)} .
$$

Example: $\frac{1}{(2 x+1)(3 x-1)}=\frac{A}{2 x+1}+\frac{B}{3 x-1}$

Case 2. $Q(x)$ is a product of linear factors, some of which are repeated: Suppose $Q(x)$ factors into

$$
Q(x)=(a x+b)^{k}
$$

Then

$$
\frac{R(x)}{Q(x)}=\frac{A_{1}}{(a x+b)}+\frac{A_{2}}{(a x+b)^{2}}+\frac{A_{3}}{(a x+b)^{3}}+\cdots+\frac{A_{k}}{(a x+b)^{k}} .
$$

Example: $\frac{1}{x^{2}(3 x-1)^{3}}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{(3 x-1)}+\frac{D}{(3 x-1)^{2}}+\frac{E}{(3 x-1)^{3}}$

Case 3. $Q(x)$ contains irreducible quadratic factors, none of which is repeated: Suppose $Q(x)$ factors into

$$
Q(x)=a x^{2}+b x+c
$$

Then

$$
\frac{R(x)}{Q(x)}=\frac{A x+B}{a x^{2}+b x+C}
$$

Example: $\frac{1}{\left(x^{2}+3\right)\left(x^{3}-1\right)}=\frac{A x+B}{x^{2}+3}+\frac{C x^{2}+D x+E}{x^{3}-1}$

Case 4. $Q(x)$ contains a repeated irreducible quadratic factor:
Suppose $Q(x)$ factors into

$$
Q(x)=\left(a x^{2}+b x+c\right)^{k}
$$

Then

$$
\frac{R(x)}{Q(x)}=\frac{A_{1} x+B_{1}}{a x^{2}+b x+c}+\frac{A_{2} x+B_{2}}{\left(a x^{2}+b x+c\right)^{2}}+\frac{A_{3} x+B_{3}}{\left(a x^{2}+b x+c\right)^{3}}+\cdots+\frac{A_{k} x+B_{k}}{\left(a x^{2}+b x+c\right)^{k}}
$$

Example: $\frac{1}{\left(x^{2}+x+1\right)\left(x^{2}+1\right)^{3}}=\frac{A x+B}{x^{2}+x+1}+\frac{C x+D}{x^{2}+1}+\frac{E x+F}{\left(x^{2}+1\right)^{2}}+\frac{G x+H}{\left(x^{2}+1\right)^{3}}$

