MATH 155 - Chapter 9.8 - Power Series: Dr. Nakamura

1. Definition: (Power Series) If x is a variable, then an infinite series of the form

$$
\begin{aligned}
f(x) & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots+a_{n} x^{n}+\cdots
\end{aligned}
$$

is called a power series. More generally, an infinite series of the form

$$
\begin{aligned}
f(x) & =\sum_{n=0}^{\infty} a_{n}(x-c)^{n} \\
& =a_{0}+a_{1}(x-c)+a_{2}(x-c)^{2}+a_{3}(x-c)^{3}+\cdots+a_{n}(x-c)^{n}+\cdots
\end{aligned}
$$

is called a power series centered at \mathbf{c}, where $c=$ constant.

NOTE: To simplify the notation for power series, we need to agree that $(x-c)^{0}=1$, even if $x=c$. (ie. $0^{0}=1$)
2. Definition: (Domain of a Series) Let $f(x)$ be a power series centered at c. Then we way that the domain of $f(x)$,

$$
f(x)=\sum_{n=0}^{\infty} a_{n}(x-c)^{n},
$$

is set of all x for which the power series converges. The set of all x values for which the power series converge is called the interval of convergence.

3. Theorem (Convergence of a Power Series):

Let $R>0$ be a real number. The convergence set for a power series $\sum_{n=0}^{\infty} a_{n}(x-c)^{n}$ is always an interval of one of the following three types:

1. A single point $x=c$. In this case, the Radius of Convergence is $\mathrm{R}=0$.
2. An interval $(c-R, c+R)$ (ie. $|x-c|<R$), plus possible one or both endpoints. In this case, the Radius of Convergence is R itself.
3. The whole real line. In this case, the Radius of Convergence is $R=\infty$.

Furthermore, a power series $\sum_{n=0}^{\infty} a_{n}(x-c)^{n}$ converges absolutely on the interior of its interval of convergence, and outside of the given interval, the power series diverges.

4. Theorem (Properties of Functions Defined by Power Series):

Suppose that $f(x)$ is the sum of a power series on on interval $(c-R, c+R)$. That is

$$
f(x)=\sum_{n=0}^{\infty} a_{n}(x-c)^{n}=a_{0}+a_{1}(x-c)+a_{2}(x-c)^{2}+a_{3}(x-c)^{3}+\cdots+a_{n}(x-c)^{n}+\cdots
$$

Then $f(x)$ is differentiable (hence continuous) on the interval $(c-R, c+R)$ and
1.

$$
\begin{aligned}
f^{\prime}(x) & =\sum_{n=0}^{\infty} \frac{d}{d x}\left[a_{n}(x-c)^{n}\right] \\
& =\sum_{n=1}^{\infty} n a_{n}(x-c)^{n-1} \\
& =a_{1}+2 a_{2}(x-c)+3 a_{3}(x-c)^{2}+\cdots
\end{aligned}
$$

2.

$$
\begin{aligned}
\int f(x) d x & =\int \sum_{n=0}^{\infty} a_{n}(x-c)^{n} d x \\
& =\sum_{n=0}^{\infty} a_{n} \int(x-c)^{n} d x \\
& =\sum_{n=0}^{\infty} \frac{a_{n}(x-c)^{n+1}}{n+1}+C \\
& =C+\sum_{n=0}^{\infty} a_{n} \frac{(x-c)^{n+1}}{n+1} \\
& =C+a_{0}(x-c)+a_{1} \frac{(x-c)^{2}}{2}+a_{2} \frac{(x-c)^{3}}{3}+\cdots
\end{aligned}
$$

The radius of convergence of the $f^{\prime}(x)$ and $\int f(x) d x$ is the same as that of the original power series. However, the interval of convergence may be different at the end points.

